Decomposition of S1-valued maps in Sobolev spaces

نویسنده

  • Petru Mironescu
چکیده

Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. We prove that for each map u ∈W s,p(Sn;S1) one can find φ ∈ W s,p(Sn;R) and v ∈ W sp,1(Sn;S1) such that u = ve. This yields a decomposition of u into a part that has a lifting in W , e, and a map "smoother" than u but without lifting, namely v. Our result generalizes a previous one of Bourgain and Brezis (which corresponds to the case s = 1/2, p = 2). As a consequence, we find an intuitive proof for the existence of the distributional Jacobian Ju of maps u ∈ W s,p(Sn;S1) (originally due to Bourgain, Brezis and the author). By completing a result of Bousquet, we characterize the distributions of the form Ju. Résumé Décomposition des applications unimodulaires dans les espaces de Sobolev. Soient n ≥ 2, s > 0, p ≥ 1 tels que 1 ≤ sp < 2. Nous montrons que, pour chaque u ∈ W s,p(Sn;S1), il existe φ ∈ W s,p(Sn;R) et v ∈ W sp,1(Sn;S1) tels que u = ve. Ceci donne une décomposition de u comme produit d’un facteur qui se relève dans W , e, et d’un facteur "plus régulier" que u mais qui ne se relève pas, à savoir v. Notre décomposition généralise un résultat antérieur de Bourgain et Brezis (qui ont traité le cas s = 1/2, p = 2). Une conséquence de notre résultat est une preuve intuitive de l’existence du jacobien au sens des distributions Ju pour les applications u ∈ W s,p(Sn;S1) (résultat dû, avec un argument différent, à Bourgain, Brezis et l’auteur). En complétant un résultat de Bousquet, nous caractérisons les distributions de la forme Ju. 1 Decomposition of S1-valued maps Our main result is the following Theorem 1 Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. Let u ∈ W s,p(Sn;S1). Then there exist φ ∈W s,p(Sn;R) and v ∈W sp,1(Sn;S1) such that u = veıφ. In addition, we have (with ∣⋅∣W r,q standing for the semi-norm given by the highest order term in ∥⋅∥W r,q) ∣φ∣W s,p ≲ ∣u∣W s,p , ∣v∣W sp,1 ≲ ∣u∣pW s,p . (1) The special case s = 1/2, p = 2 of Theorem 1 is due to Bourgain and Brezis [4]. (In [4], u is supposed to be in the H1/2-closure of C∞(Sn;S1). This extra assumption was removed in [6].) In Theorem 1, Sn does not play special role; one could replace, e. g., Sn by any smooth bounded simply connected domain. Theorem 1 yields a satisfactory substitute to the lifting theory in W s,p(Sn;S1), theory Université de Lyon ; CNRS ; Université Lyon 1 ; Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France. Email address: [email protected] 1 ha l-0 07 47 67 7, v er si on 1 31 O ct 2 01 2 Author manuscript, published in "Comptes Rendus de l Académie des Sciences Series I Mathematics 348, 13-14 (2010) 743-746" DOI : 10.1016/j.crma.2010.06.020

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some fixed points for J-type multi-valued maps in CAT(0) spaces

In this paper, we prove the existence of fixed point for J-type multi-valuedmap T in CAT(0) spaces and also we prove the strong convergence theoremsfor Ishikawa iteration scheme without using the xed point of involving map.

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

Sobolev maps on manifolds: degree, approximation, lifting

In this paper, we review some basic topological properties of the space X = W s,p(M ;N), where M and N are compact Riemannian manifold without boundary. More specifically, we discuss the following questions: can one define a degree for maps in X? are smooth or not-farfrom-being-smooth maps dense in X? can one lift S1-valued maps?

متن کامل

Vector-valued Inequalities on Herz Spaces and Characterizations of Herz–sobolev Spaces with Variable Exponent

The origin of Herz spaces is the study of characterization of functions and multipliers on the classical Hardy spaces ([1, 8]). By virtue of many authors’ works Herz spaces have became one of the remarkable classes of function spaces in harmonic analysis now. One of the important problems on the spaces is boundedness of sublinear operators satisfying proper conditions. Hernández, Li, Lu and Yan...

متن کامل

Function Spaces of Variable Smoothness and Integrability

A. In this article we introduce Triebel–Lizorkin spaces with variable smoothness and integrability. Our new scale covers spaces with variable exponent as well as spaces of variable smoothness that have been studied in recent years. Vector-valued maximal inequalities do not work in the generality which we pursue, and an alternate approach is thus developed. Applying it, we give molecular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012